Senin, 24 September 2012

teori kuantum klasik


Dasar-dasar teori kuantum klasik

Dasar-dasar teori kuantum klasik
a. Spektrum atom
Bila gas ada dalam tabung vakum, dan diberi beda potensial tinggi, gas akan terlucuti dan memancarkan cahaya. Pemisahan cahaya yang dihasilkan dengan prisma akan menghasilkan garisspektra garis diskontinyu. Karena panjang gelombang cahaya khas bagi atom, spektrum ini disebut dengan spektrum atom.
 Fisikawan Swedia Johannes Robert Rydberg (1854-1919) menemukan bahwa bilangan gelombang σ garis spektra dapat diungkapkan dengan persamaan berikut (1889).
σ = 1/ λ = R{ (1/ni2 ) -(1/nj2 ) }cm-1 … (2.1)
Jumlah gelombang dalam satuan panjang (misalnya, per 1 cm)
ni dan nj bilangan positif bulat(ni < nj) dan R adalah tetapan khas untuk gas yang digunakan. Untuk hidrogen R bernilai 1,09678 x 107 m-1.
Umumnya bilangan gelombang garis spektra atom hodrogen dapat diungkapkan sebagai perbedaan dua suku R/n2. Spektra atom gas lain jauh lebih rumit, tetapi sekali lagi bilangan gelombangnya juga dapat diungkapkan sebagai perbedaan dua suku.
b. Teori Bohr

Teori Bohr
  1. Elektron dalam atom diizinkan pada keadaan stasioner tertentu. Setiap keadaan stasioner berkaitan dengan energi tertentu.
  2. Tidak ada energi yang dipancarkan bila elektron berada dalam keadaan stasioner ini. Bila elektron berpindah dari keadaan stasioner berenergi tinggi ke keadaan stasioner berenergi lebih rendah, akan terjadi pemancaran energi. Jumlah energinya, h ν, sama dengan perbedaan energi antara kedua keadaan stasioner tersebut.
  3. Dalam keadaan stasioner manapun, elektron bergerak dalam orbit sirkular sekitar inti.
  4. Elektron diizinkan bergerak dengan suatu momentum sudut yang merupakan kelipatan bilangan bulat h/2π, yakni
mvr = n(h/2π), n = 1, 2, 3,. … (2.3)
Energi elektron yang dimiliki atom hidrogen dapat dihitung dengan menggunakan hipotesis ini. Di mekanika klasik, gaya elektrostatik yang bekerja pada elektron dan gaya sentrifugal yang di asilkan akan saling menyetimbangkan. Jadi,
e2/4πε0r2 = mv2/r … (2.4)
Dalam persamaan 2.3 dan 2.4, e, m dan v adalah muatan, massa dan kecepatan elektron, r adalah jarak antara elektron dan inti, dan ε0 adalah tetapan dielektrik vakum, 8,8542 x 10-2 C2 N-1 m2.

c. Spektra atom hidrogen
Menurut teori Bohr, energi radiasi elektromagnetik yang dipancarkan atom berkaitan dengan perbedaan energi dua keadaan stationer i dan j. Jadi,
ΔE = hν = │Ej – Ej│= (2π2me402h2 )ï¼»(1/ni) -(1/nj2 )ï¼½ nj > n(2.9)
Bilangan gelombang radiasi elektromagnetik diberikan oleh:
ν = me4/8ε02n2h3)ï¼»(1/ni2 ) -(1/nj2 )ï¼½ (2.10)
Suku tetapan yang dihitung untuk kasus nj = 2 dan ni = 1 didapatkan identik dengan nilai yang didapatkan sebelumnya oelh Rydberg untuk atom hidrogen (lihat persamaan 2.1). Nilai yang secara teoritik didapatkan oleh Bohr (1,0973 x 10-7 m -1) disebut dengan konstanta Rydberg R. Deretan nilai frekuensi uang dihitung dengan memasukkan nj = 1, 2, 3, … berkaitan dengan frekuensi radiasi elektromagnetik yang dipancarkan elektron yang kembali dari keadaan tereksitasi ke tiga keadaan stasioner, n = 1, n =2 dan n = 3. Nilai-nilai didapatkan dengan perhitungan adalah nilai yang telah didapatkan dari spektra atom hidrogen. Ketiga deret tersebut berturut-turut dinamakan deret Lyman, Balmer dan Paschen. Ini mengindikasikan bahwa teori Bohr dapat secara tepat memprediksi spektra atom hidrogen. Spektranya dirangkumkan di Gambar 2.4.
d. Hukum Moseley
Fisikawan Inggris Henry Gwyn Jeffreys Moseley (1887-1915) mendapatkan, dengan menembakkan elektron berkecepatan tinggi pada anoda logam, bahwa frekuensi sinar-X yang dipancarkan khas bahan anodanya. Spektranya disebut dengan sinar-X karakteristik. Ia menginterpretasikan hasilnya dengan menggunakan teori Bohr, dan mendapatkan bahwa panjang gelombang λ sinar- X berkaitan dengan muatan listrik Z inti. Menurut Moseley, terdapat hubungan antara dua nilai ini (hukum Moseley; 1912).
1/λ = c(Z – s)2 … (2.11)
c dan s adalah tetapan yang berlaku untuk semua unsur, dan Z adalah bilangan bulat.
Bila unsur-unsur disusun dalam urutan sesuai dengan posisinya dalam tebel periodik (lihat bab 5), nilai Z setiap unsur berdekatan akan meningkat satu dari satu unsur ke unsur berikutnya. Moseley dengan benar menginterpretasikan nilai Z berkaitan dengan muatan yang dimiliki inti. Z tidak lain adalah nomor atom.

e. Keterbatasan teori Bohr
Keberhasilan teori Bohr begitu menakjubkan. Teori Bohr dengan sangat baik menggambarkan struktur atom hidrogen, dengan elektron berotasi mengelilingi inti dalam orbit melingkar. Kemudian menjadi jelas bahwa ada keterbatasan dalam teori ini. Seetelah berbagai penyempurnaan, teori Bohr mampu menerangkankan spektrum atom mirip hidrogen dengan satu elektron seperti ion helium He+. Namun, spektra atom atom poli-elektronik tidak dapat dijelaskan. Selain itu, tidak ada penjelasan persuasif tentang ikatan kimia dapat diperoleh. Dengan kata lain, teori Bohr adalah satu langkah ke arah teori struktur atom yang dapat berlaku bagi semua atom dan ikatan kimia. Pentingnya teori Bohr tidak dapat diremehkan karena teori ini dengan jelas menunjukkan pentingnya teori kunatum untuk memahami struktur atom, dan secara lebih umum struktur materi.

Tidak ada komentar:

Posting Komentar